收回这两个指头,再将右手中指伸出。读作100(二进位)或四(十进位)。
如此类推,你会发现这样来回伸缩手指需要练习或者天生的灵活性——当然了,除非你将手指放在桌边上休息,那就无所谓了。
你的手指确实就可当做“数点”,你是在依靠有效的进位制运用它们的。请注意,你可以表示从00000;00000(两个手都握着)以至到11111;11111(两手都伸开)之间的任何数目。下一次你若想将一个可能大的数目——比如,在拥挤堵塞的车道上你前边的车数;或者,棒球投手投掷的安打数目——你可以试试这种方法。从0数到1023是毫无问题的。确实,通过显而易见的肢体伸展——比如通过腕、肘等等成功地延伸或收缩的位置的递增——你可以很快就算出你从未数到过的数目。
此外,你什么时候都可以得出要算的总数(比如,这不像是用十进位手指数法,用这种办法你必须数手指本身才可得出总数),你只需要读下去就行了。假设你同一个朋友一起外出散步(比方说你丢了计步器),而你的朋友又想知道你在某个给定时问内走了多少步。你一直数着指头,最后发现自己伸着左手的小指、食指和拇指,右手的拇指和无名指。依照我们已定的的规则,你数读手指便会发现你已经走了10011;10010步。又据我们的发音规则,你可以传达出这样的信息:“嘀嗒嗒嘀嘀嘀嗒嗒嘀嗒”。
当然了,你朋友可能会是位因循守旧的人,不情愿舍弃十进位制,所以你可能想给他换算出来。如果你对每个手指所代表的十进位对等数都能记牢的话,那是十分容易的:
左手
小指:2^9=512
无名指:2^8=256
中指:2^7=128
食指:2^6=64
拇指:2^5=32
右手
拇指:2^4=16
食指:2^3=8
中指:2^2=4
无名指:2^1=2
小指:2^0=1
依此而行,若要将手指数数结果变为十进制数目,只需将上面给出的手指表示的对等数加起来。上面提到的10011;10010就可解为:
左小指:512
左食指:64
左拇指:32
右拇指:16
右无名指:2
——————
626
这样,就可告诉你朋友,你走了626步。
像上面所讲,我们已经找到了二进位制的灵活运用实际上比十进位制更为精确这样的第二个例子——可以看出,是由100这个因素决定的。那么,暂时让我们不计二进位的有限“不利”,以求对它的某些更为引人注意的特点稍作了解吧。
我们可以看到,二进位制的算术是算术中最为简便的。这就是它之所以成为惟一适应全能自动电脑的原因所在;但即使在电子计算机设计的比较简单的层次上,它也显示出优越之处。比如说,非常精确的微型计算器就可以设计成二进位数程序。所以,至少在做常规计算时,无需使用齿轮和链条,也无需动力源驱动。如果做十位数目的加法或减法(乘法和除法比较而言用处较小),你只需要上(“1”)和下(“0”)组成的10个层次的一组数。当然了,做这么简单的计算,你无需破费钱财去买计算器。你自己就能造一个。或者变通一下,你可以使用我们刚刚谈到的天生的有10个位置的二位数计算机,而这个天生的计算机就长在我们手臂上。
举个例子:你要修房子,手头有13个4*8的镶板,你发现有650平方英尺的墙要补。问:你还要到外边去买多少块镶板才行?
这个问题并没有多少难解的地方,暂且先让我们把手指当做计算机,用二进位算术把它算出来。首先,我们需要先转换成二进位——这只是因为我们出的题用的是十进位。但如果把换算时间计在答题时间之内,那将不是公平的。
用二进位,你手头有1101个100*1000块镶板,要补10100,01010平方英尺墙壁。
很明显,1101*100*1000不过是位置的认定罢了。你让左手代表01101,让右手代表00000;那就是你所有的镶板平方英尺总数——可以说,是用手表示的。然后,减法①就只需要考虑接续的数点,从右手数起,以你要减出的写出的数目中的相对应数点减去你手指上显示的数点,另外负载着“借用的”数目。(你能够记着,当你首次学习十进位减法的规则时,“负载”要给你多大麻烦?那么,如果这样能使你找到“负载”的诀窍,就不要放弃二位数的减法。)
你在手指上一次“写”一个数,就能“写出”结果。也就是说,当你从写下的数目中减去你右拇指的数点,你右手余下的手指已经表示出答案的最