磁力约束实现核聚变的核心思路,其实并没有那么复杂。
核聚变在超高温和超高压状态下发生。
以后者为主的发生条件,虽然可能在宇宙中最为普遍,
但人类目前既无法做到,也没有可以畅想的实现方向。
那就只能以前者为主,不断尝试提高发生核聚变的物质的温度。
几千万度,几亿度。
然后,这时候,就出现了一个显而易见的问题。
如果只是为了让它爆炸,一瞬间发生核聚变,
那就不用管它。
但现在是要将它作为能源,就需要它持续发生聚变,
也就是说,始终维持在超过一亿度的温度。
这么高的温度,用怎么样一个容器去容纳它。
人类目前熔点最高的材料,也就能够承受三四千度,
显然和核聚变发生的上亿度,差了几个量级。
然后,而为了解决这个问题,一个天才般的创想就冒了出来。
以磁力约束超高温的等离子体,让它干脆在容器中,不和容器内壁接触。
以强磁场控制剧烈反应中的等离子体,同时以磁场加热等离子体温度和密度。
完美解决了,核聚变发生时温度过高的问题。
此刻,莫道眼前的EASt就是这种原理下的产物。
到这儿,似乎可控核聚变的问题,似乎都已经得到了解决。
——如果只是需要一个可以发生核聚变的玩具。
但问题是,人们想要用核聚变来发电。
就不得不面临,此刻可控核聚变最大的问题。
可控核聚变装置的自持率问题。
为了维持托卡马克装置中等离子体发生核聚变,同时约束这些等离子体的运动,
不让这些超高温的等离子体,将整个装置连着整个实验中心都烧出来一个洞。
现在的托卡马克装置开启的时候,都需要往其中提供大量的电力。
而现在,所有托卡马克装置,自己能够发出来的电,都不够自己维持核聚变用的。
也就说,从普遍意义上来讲,
现阶段的可控核聚变装置,不光是发不出来电,还得耗电。
而造成这种尴尬境地的原因,归根结底就在于,
托卡马克装置中,等离子体发生聚变的强度不够。