张宇站在实验室的中央,注视着桌面上摊开的研究数据和原型,眉头微蹙,思绪翻涌。
等离子能量枪的成功研发让他尝到了科技创新的甜头,但他也清楚,战斗的胜负从不是单一武器能决定的。
他需要更灵活、更智能的武器来对抗日益复杂的敌方防御。
“自适应纳米纤维弹药……如果能让弹药根据目标的防护系统实时调整威力和穿透力,将彻底改变我们的战斗方式。”
张宇轻声自语,目光坚定。
艾利斯的声音在他脑海中响起:
“张宇,根据我的分析,敌方的防御系统正在逐步多样化,尤其是磁场屏障和能量护盾的使用频率明显提高。
你的设计方向是正确的,但需要进一步突破材料限制和能量控制技术。”
张宇首先着手解决纳米纤维的自适应问题。
他需要一种能够动态调整分子结构的技术,让弹药能够在接触目标后实时优化威力。
“艾利斯,目标的防护方式多种多样,从厚重装甲到能量护盾,再到磁场干扰。
我们如何让弹药识别这些防护类型并快速调整?”
张宇一边翻阅数据,一边问道。
“建议结合纳米级感应器和自学习算法,”
艾利斯迅速回应,
“通过实时反馈,让纳米纤维根据目标防护层的特性重新排列分子结构,从而实现最佳穿透效果。”
张宇眼中一亮,
“那就试试这种思路。”
他立即开始设计感应器和算法模型,并通过虚拟仿真系统测试效果。
屏幕上,一颗模拟弹药在接触不同目标时,其分子结构迅速调整,成功突破了多层防护。
然而,问题很快显现:弹药在遇到强磁场屏障时,感应器的反应延迟导致穿透力下降。
张宇皱起眉头,
“看来,仅靠现有的感应技术还是不够。”
因此,张宇需要设计一种智能分子结构,这种结构能够在弹药接触目标时,根据目标的硬度、形状和防御层级,自动优化其分子排列,从而实现不同目标之间的精准适配。
张宇通过纳米技术中的分子调控技术,研发了一种能够动态感知目标的分子加速器。
这个加速器采用了自学习算法,能够在每次接触不同目标后,通过内置的传感器实时调整分子结构。
为了使加速器在弹药接触目标时迅速启动并精准调节,张宇需要设计一个极为精密的激活机制。
然而,如何确保加速器在瞬间激活并在不同目标上产生不同效果,是一大难题。
张宇研发了一种纳米级感应器,能够在微秒级别识别目标的材质和防护层,进而启动加速器。
“失败了。”