黎青颜眸子微抬,眼神从题目落在了卢博士身上。
然后同他拱了拱手,淡淡然道。
“卢博士,学生已有答案。”
此话一出,全场安静。
卢博士脸上的得意都还没下去,就被惊着了。
他的心头好,他自己都蒙着答案解了有一会,黎青言如何能这么快解开?
莫不是试出来的?
那能叫“算数”吗?!
卢博士有些不高兴地吹了吹胡须,提醒道。
“本官可是要具体解法的。”
黎青颜依旧面不改色道。
“那是自然。”
话音一落,众人又是倒吸一口气,就连白景书脸上都有片刻的错愕。
这题,他都还没想好解法,当然,也不可能在这么快的时间内想好解法。
卢博士见话都说到这份上了,而且他确实也有几分好奇,黎青言是否真能答出来,便双手轻轻交叠了下,同黎青言道。
“如此,你便说来听听吧。”
卢博士话刚说完,所有人的耳朵皆是竖起。
全然是听黎青颜如何解题的,因为他们在场无一人在这么短的时间解开。
黎青颜倒是一点都没慌乱,身姿站得笔直,一脸从容道。
“答案是,二十三。”
“三三数之剩二,置一百四十;五五数之剩三,置六十三,七七数之剩二,置三十,并之。得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五;一百六以上以一百五减之即得。”
这是《孙子算经》里的答案。
意思就是根据问题“有一个整数,除以3会余2、除以5会余3、除以7会余2”,我们可以先找到三个数。
这题目中有三个条件——
“除以3会余2”
“除以5会余3”
“除以7会余2”
那我们就一个一个条件分解开来。
先求在假设其中两个条件能被整除的情况下,除以另外一个条件余1的数。
第一个数能同时被5和7整除,但除以3余1,就是70。
第二个数能同时被3和7整除,但除以5余1,就是21。
第三个数能同时被3和5整除,但除以7余1,就是15。
简单点说,就是除以3余多少个1,就加上多少个70,除以5余多少个1,就加上多少个21,除以7余多少个1,就加上多少个15。